Computational aspects of PDF refinement: development of the program MolPDF
J. Rodriguez-Carvajal and Alexei Bytchkov

(Inspired from the manual of PDFFIT 1.4 by Thomas Proffen and Simon Billinge)

These notes have been written as an extension of the appendix of the manual of PDFFIT 1.4 by Thomas
Proffen and Simon Billinge. We have added some additional formulae to clarify the relations of thermal
parameters with the width of Gaussian peaks used to model the G(r) function defined below, as well as the
derivatives when crystallographic constraints are used. The expression of o is also different of the
corresponding expression used now in PDFgui because we use a special sharpening coefficient applied to
specific distances. Contrary to PDFgui, which transforms a crystallographic description to P1 before
applying eventual symmetry constraints, we use the full crystallographic symmetry from the beginning
and, in case we need to reduce the symmetry, we use subgroups of the parent space group for the analysis
of real data. This avoids the application of wrong constraints inadvertently.

The ideal model for PDF analysis is based in the function G(r) that for a static distribution of atoms is
provided by the formula:
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The variable r is the distance from the origin in real space and rj; is the distance between atoms (i, j). The
delta function should be replaced by Gaussians in the case the atoms (i, j) are moving and characterized by
displacement parameters. To compare the PDF with a experimentally measured quantity, the formula [1]
should be convoluted with the function w(r), which is the Fourier transform of the step function equal to 1
up to Q=Qmax and zero above Qmax. The function is
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For a data set s and P contributing phases the total PDF is calculated as

G(r,s) = fSB(r,s)ZP: f.G,(r,s)

(Quuy (8, el
2

B(r,s) :exp{

Where fs is the global scale factor for pattern s and f, is phase scale factor (their sum is equal to 1). The
B(r, s) function takes into account the experimental resolution factor (it depends on the data set and not on
the phase). The convolution with [2] is dependent of the particular data set. The quantity that has to be
compared with the experimental PDF for set s is:
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To simplify the expressions we will use a single phase and a single PDF pattern (single data set) in most
of the formulae. In the following we will drop the s and p indices when convenient (we replace Gy(r, s) by
G(r)). The extension to multiple phases and multiple data sets is straightforward.

The effective way of calculating the PDF of a single phase is to use the formula:
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The normalized Gaussian contains the interatomic distances and the width is dominated by the thermal
displacement parameters as used in Crystallography. However the correlated motion can be taken into
account by using the expression:
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The sharpening factor sn is normally equal to 1.0 but it may be refined for intramolecular distances, or
for distances for which a restraint or a rigid body constraint has been provided. An eventual dependency

of smo On the distance is being investigated. Where G'ij is calculated taking into account the thermal

displacement parameters of atom i and j, as follows:
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Relations between different definitions of thermal parameters
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The Cartesian components of the thermal displacement parameters are needed for determining the thermal
ellipsoid principal axes and orientation. The mean-square displacement along an arbitrary direction given
by the unitary vector s is given by:

() =s'Ug,s with T(H)=exp{-27"H'U,, H}
The relations are independent of the reference system we use, so T(H)=T(h) and then:
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The components of r;; are fractional coordinates of the interatomic vector. G is the direct metric tensor
(symmetric matrix). In practice the calculation of [7] is done properly by using:
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The quantity U, (i, j) for each type of pair is previously stored and the calculation of [8] is done at the
same time of calculating the interatomic distances.

Let us establish the relation between o’ and Bis(i) and Big(j) as used in crystallography. The relation
between p and B;s, (or a diagonal matrix, Bis,, having Bis, as terms) is given by the expressions:
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In which the matrix Oc is the transformation matrix from Cartesian coordinates to fractional coordinates
(just the inverse of the A-matrix used above: Oc=A"). Substituting Ucr into the expression [8] we obtain:
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Notice that o’;; does not depend on cell parameters when using Bis, parametrization.
Refinement of the observed PDF pattern using Least-Squares

When we have a single observed PDF pattern and a single phase contributing to it, the function to be
minimized by least squares (having an initial crystallographic model) is the following:
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Where o(r) is the standard deviation of Ggs(r) and the vector B contains the free parameters of the model.
In our case they are: scale factor(s) fp, resolution damping factor(s) Qdamp (s), sharpening/broadening

factors: o,,0,,Qg, cell parameters (a, b, ¢, a, B, y), positional parameters (X, Y, Z)i=1natoms (With constraints
of the space group or not), occupation factors c; and the thermal parameters {Bis}i=1niso fOr isotropic
atoms or {Ucir(1,1), Ucir(2,2), Ucir(3,3), Ucir(1,2), Ucir(1,3), Ucir(2,3)} i=1naniso fOr anisotropic atoms.
For doing properly the refinement the gradient of the function 9 with respect to the free parameters is
needed. The derivatives of the function Gg,c(r,8) will be discussed in the forthcoming paragraphs. One has
to keep in mind that:
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So, what will be discussed for each possible parameter to be refined are the derivatives: and we

oG(r,B)
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have to take into account that they have to be convoluted with w(r) for getting the full derivatives.

Derivative of G(r) with respect to the scale factors and resolution damping factors

From equations [3] we have:
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Derivative of G(r) with respect to the molecular sharpening factor Sy

From equations [5] we see that o parameters appear only in the Gaussian function T. We have first to
make the derivative with respect to sigma and then o with respect to sy,. This factor is different for each
phase so for a particular phase we have:
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If we consider sy as a function depending on a parameter sy, and the distance r, like s,o=1-exp(-sy r), the
derivative with respect to the s, parameter is given by:
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In the code, the intermediate variables used for representing these formulae are:
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Gval(r): T(r—r;,o;), yc(r)=Intens*Gval(r): AT (r - ,J,O'ij),rmij(r)[(r_gj) _1}
O.

Derivative of G(r) with respect to the linear sharpening (dynamic correlation) factor &;.



The derivative with respect to d; is done similarly to the previous one except that the final derivative of oj
with respect to 9, is different:

oG, (r,s oT(r-r,, o) 0o,
. a;( ): Spr(r,S)_ZAJ ( Ij u) O-u
(P) N,r 43 oo, 6,

ij

G5) _ ¢ gy s f
00,(p)

GO'U , 1 1 Smolo-
o, ™7 5 o) e,
1 2 1 QB | ij j 1

rij I]
So, finally:
aG(I’,S) __ fs pr(r!S)z T(r |]1O-ij) (r—jj)z -1 Smold [14]
851(p) 2Npr i GIJ Gij r”

Derivative of G(r) with respect to the quadratic sharpening (dynamic correlation) factor 8,.

The derivative with respect to &, is equal to the previous one except that each term in the sum must be
divided again by rj;, because:
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So the final derivative has a similar expression to that of o;:
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Derivative of G(r) with respect to the broadening factor Qg.

Similarly to the previous derivatives with respect to 3, and &, the derivative with respect to Qg is given
by:
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Derivative of G(r) with respect to the cell parameters.

The cell parameters an (for a, b, c,a, £, y) appear in the expressions of r;;, g;; and cell volume V,., so that
only the terms T(r-ri;, oj;) and pp have to be explicitly considered.

The general expression is:
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The derivatives inside the braces, dropping the index p, are calculated as follows:
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In the code, the variable rsij(r) corresponds to: {
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If we write:
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Now we need the derivatives of r;; and g;; with respect to a,.

We notice that for anisotropic case we have:
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The middle term in parenthesis and the derivative of w.r.t the cell parameters will be calculated later.

For inorganic compounds for which sy, is constant and equal to 1, the first term is zero. If, moreover, both
atoms are isotropic the middle term is also zero because a'ij is independent of the distance. In such a case
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The last expression is the most general for isotropic case. For molecular compounds considering isotropic
case and a simple expression of Sy, like sp=1-eXp(-sh rij), we have:
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The term — is represented in the code by the variable drd. Taking into account the expression [7], we
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obtain, by deriving with respect to a,, the following expressions:
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This derivative is represented by the variable dsp. In the case of both isotropic temperature factors the
contribution given by [19] is zero.

We have taken into account that the componentsr; =dia,, where dj =X, —x are the fractional

components of the interatomic vector. The derivatives with respect to the angles make that the second
term is zero because rijI do not depend on them. We need now to calculate the derivatives of I; with

respect to a,, which are explicitly given by the following relations:
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The derivatives with respect to angles are given in radians and they have to be multiplied by 180/x to

work with degrees. The derivatives of the density po=N,/V, with respect to the cell parameters are given
by:
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We have to use the expressions [20] to explicitly calculate [17], once [18] has been calculated by inserting
[19] and then into [17]. Finally [16] has to be calculated using [17] and [21].

Derivative of G(r) with respect to the thermal parameters.

Thermal parameters appear only in the function T and they determine the width of the Gaussians. The
derivatives are calculated as:
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Derivative with respect to Bis,

The derivative with respect to the By (i) can be performed easily as:
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Additional note taking into account the symmetry

In this paragraph we explicitly use the symmetry constraints relating the atom j to a corresponding atom k
in the asymmetric unit. In the following expression (in which we have removed the CIF label) we can
write the dependency of U(j) on U(k). The atom i is always in the asymmetric unit and the atom j is related
to the atom k in the asymmetric unit by:
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In which the delta function means the following: &%), =0 if the component o3 does not depend on p and

65‘[)%8] =1 if the component ¢ depends on p. The final derivative can be written in component forms as:
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Derivative of G(r) with respect to the atomic positions.

The atomic coordinates appear only in the function T through rj; and ;. So the derivatives are calculated
similarly to those of the cell parameters. If we use the symbol x,(i) (n=1, 2, 3) for one of the fractional
coordinates of the atom i, we have:
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Finally the only unknown we have to calculate is the derivative of rj:
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Inserting [27] into [26] and then [26] and [27] into [25], etc., then we finally can calculate the final
expression given by [23].

Additional note taking into account the symmetry

In this paragraph we explicitly use the symmetry constraints relating the atom j to a corresponding atom k
in the asymmetric unit. The vector d; can be written explicitly as:
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It is more convenient to write the last equation in components, as shown. Whatever coordinate (x, vy, z),
may depend on the free parameter p. The crystallographic constraints are linear in the parameter p, so that
Xe=Xooa+ M Py, Where Xo, IS a constant, d,, is zero if there is no dependency on p or 5, = 1 if X,
effectively depends on p, and m,, is called the multiplier, which is generally equal to 1, 2 or to a simple
rational number. The last derivative can be written as:
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For instance if the position of one atom is of the form r = (X, y, z) = (p, 2p, z), the derivative with respect
to p will be (1, 2, 0). For a position of the form r = (x, y, z) = (p, -p+1/4, 2), the derivative with respect to p
will be (1, -1, 0).

Derivative of G(r) with respect to the site occupancies.

The site occupancy for a given phase appears in the terms Aj;, N, and pp, SO we have:
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Taking into account the expressions [5] we obtain:
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Spherical and platelet-like nanoparticles

In nanoparticles the correlation in G(r) at distances that are larger than the size of the particles disappears.
The effect in G(r) is that the intensity of peaks at high r is lower than the calculated G.(r) of the bulk. The
observed G(r) is obtained from G,,(r) by multiplying by a form factor f(r): G(r) = f(r) G..(r).

The form factor for different kind of nanoparticles has been calculated by K.Kodama, S. likubo, T.
Taguchi and S. Shamoto (Acta Cryst. A62, 444-453 (2006)). Here we provide the form factors for two
kinds of nano particles, sheets of thickness t and spheres of diameter d:
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For a distribution of diameters the following general expressions have been derived by R.C. Howell, T.
Proffen and S.D. Conradson (Phys.Rev. B73, 094107 (2006)):
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The average diameter d and width of the distribution are related to the parameters (n, D) as:
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Using the above equations one can derive a closed form for n>3:
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The function fpe(r, D, n) should be multiplied by G.,(r) for obtaining the observed G(r) before convoluting
with the sinc function (see equations [2, 4]). The user should select the value of n, and D can be refined
for obtaining the average diameter and widths from equations [33]. The derivative of [34] with respect to
D is:

k

Wzéfmz(r’an)_ D n-2 [ I;_ Mj[ j[35]
n 2n(n-1)(n-2)

The general expression of G(r) is
P
G(r,s) = f,B(r,s)>  f, f - (r,D,,n,)G,(r,s) [36]
p=1

The derivative of G(r) with respect to D, is given by the expression:

oG(r,s)
oD

P of o (r,D,,n )
= f.B(r,s)> f =P P
B9y 1, Teel

p p=1 p

G,(r,s) [37]

The use of restraints together with the refinement of G(r)

For molecular systems the (internal) interatomic distances and bond angles are practically fixed even in
the case of amorphous or nanocrystalline materials. Only the torsion angles giving rise to different
conformations of a same molecule change with the state of the sample. Crystalline molecular systems are
mostly or relatively low symmetry and the number of free parameters may be much higher than those
corresponding to ionic of metallic systems. The refinement of a large number of parameters is unstable
and if not constrains (or restraints) are applied, the molecule is unphysically distorted. The use of
restraints does not diminish the number of free parameters it only increases the number of observations in
a very convenient way. The cost function to be minimized is now the following:

ZZ :Z{Gobs(r)_Gcalc(riﬁ)} +§|: obs(l) calc(I (1):| [38]

. o(r) = a(i)




Where V
and V,

calc

(i) is the value of the prescribed variable (interatomic distance or bond angle) for observation i

(i,a) is the corresponding calculated value that depends on a subset a of the parameter vector 3 .
The standard deviation o(i) is provided by the user and it is a measure of the strength of the prescribed
restraint. The smaller the value of (i), the stronger the weight of the restraint. The most important

restraints in molecular systems are the internal (inside the molecule) distances and bond angles. Other
restraints may be: anti-bump prescriptions that avoid the interpenetration of atoms of the same or
different molecules, planarity of group of atoms, special torsion angles, etc.

Presently, the only restraints fully implemented concern bond-distances and bond-angles.

(To be completed)



